bài 24 trang 111 sgk toán 9 tập 1

Câu hỏi 2 SGK Toán 9 tập 1 trang 111. Câu hỏi 2 (trang 111 SGK): Hãy chứng minh cách dựng trên là đúng. Cách dựng: (h. 75) Dựng M là trung điểm của AO. Dựng đường tròn có tâm M bán kính MO, cắt đường tròn (O) tại B và C. Kẻ các đường thẳng AB và AC. Ta được các tiếp tuyến Do đó, phương trình (1) tất cả nghiệm kép (x = displaystyle – b over 2a) 2. Trả lời thắc mắc 2 trang 44 sgk Toán 9 tập 2. Hãy giải thích vì sao khi (Delta 3. Trả lời thắc mắc 3 trang 45 sgk Toán 9 tập 2. Áp dụng bí quyết nghiệm nhằm giải những phương trình: a) (5x^2 – x +2 = 0) Hướng dẫn giải bài 24 trang 111 SGK môn Toán lớp 9 tập 1 – Giải bài tập Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường Giải bài 7.17 trang 33 SGK Toán 7 tập 2 - Kết nối tri thức . Trên một mảnh đất hình chữ nhật có chiều dài 65 m, người ta định làm một bể bơi có chiều rộng là x nét, chiều dài gấp 3 lần chiều rộng. Sơ đồ và kích thước cụ thể (tính bằng mét) đươc cho trong Hình 7.1. • Giải bài xích 22 trang 111 – SGK Toán lớp 9 tập 1 mang đến đường trực tiếp d, • Giải bài bác 23 trang 111 – SGK Toán lớp 9 tập 1 Đố. Dây cua-roa trên • Giải bài 24 trang 111 – SGK Toán lớp 9 tập 1 mang lại đường tròn (O), dây Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. Giải bài 24 trang 111 sgk Toán 9 - tập 1 - Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn môn Toán Lớp 9 Giải bài 24 trang 111 – SGK Toán lớp 9 tập 1. Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a) Chứng minh rằng CB là tiếp tuyến của đường tròn. b) Cho bán kính của đường tròn bằng 15 c m, A Môn Toán. Toán lớp 12; Toán lớp 11; Toán lớp 10; Toán lớp 9; Toán lớp 8; Toán lớp 7; Toán lớp 6. Sách Chân Trời Sáng Sạo. Chương 1: Số Tự Nhiên; Chương 2: Số Nguyên; Chương 3: Hình Học Trực Quan; Sách Kết Nối Tri Thức Với Cuộc Sống; Vật Lý. Vật lý lớp 12; Vật lý lớp 11 laterhara1979. Bài 24 trang 111, 112 Toán 9 Tập 1Giải bài 24 trang 111, 112 SGK Dấu hiệu nhận biết tiếp tuyến của đường tròn với hướng dẫn và lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa môn Toán 9, các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn 24 SGK Toán 9 tập 1 trang 111 112Bài 24 trang 111 112 SGK Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm Chứng minh rằng CB là tiếp tuyến của đường Cho bán kính của đường tròn bằng 15cm, AB = 24 cm. Tính độ dài dẫn giải- Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp Để nhận biết một đường thẳng là tiếp tuyến của một đường tròn ta có hai dấu hiệu sau+ Dấu hiệu 1 Đường thẳng và đường tròn chỉ có một điểm chung định nghĩa tiếp tuyến.+ Dấu hiệu 2 Đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm giải chi tiếta Gọi H là giao điểm của OC và AB, ΔAOB cân tại O OA = OB, bán kính.OH là đường cao nên cũng là đường phân AC là tiếp tuyến tại A của đường tròn O Xét tam giác OAC và tam giác OBC có”OA = OB bằng bán kính chứng minh trênOC là cạnh chung=> CB vuông góc với OB, mà OB là bán kính của đường tròn O⇒ CB là tiếp tuến của đường tròn O tại B. điều phải chứng minhb Ta cóHO vuông góc AB nên H là trung điểm của AB=> HA = BH = AB/2 = 12Xét tam giác OAH vuông tại H, áp dụng định lí Pi – ta – go ta cóXét tam giác vuông OAC có đường cao AH, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta cóVậy OC = 25 cm-> Bài tiếp theo Bài 25 trang 112 SGK Toán 9 tập 1-Trên đây GiaiToan đã chia sẻ Giải Toán 9 Bài 5 Dấu hiệu nhận biết tiếp tuyến của đường tròn giúp học sinh nắm chắc Chương 2 Đường tròn. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài giảng sắp tới tốt hơn. Chúc các bạn học tập tốt!Lượt xem 656 Chủ đề liên quan Đề bàiCho đường tròn \O\, dây \AB\ khác đường kính. Qua \O\ kẻ đường vuông góc với \AB\, cắt tiếp tuyến tại \A\ của đường tròn ở điểm \C\. a Chứng minh rằng \CB\ là tiếp tuyến của đường tròn. b Cho bán kính của đường tròn bằng \15cm,\ AB=24cm\. Tính độ dài \OC\.Phương pháp giải - Xem chi tiết a Dùng dấu hiệu nhận biết tiếp tuyến Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. Sử dụng tính chất + Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. + Nếu một đường thẳng là tiếp tuyến của đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm đó. b Sử dụng định lí Pytago \\Delta ABC\ vuông tại \A\, khi đó \BC^2=AC^2+AB^2\. Sử dụng hệ thức lượng trong tam giác vuông \\Delta ABC\, vuông tại \A\, \AH \bot BC\, khi đó \AB^2= Lời giải chi tiết a Gọi \H\ là giao điểm của \OC\ và \AB\. Vì \OH\perp AB\ nên \HA=HB\ Định lý 2 - trang 103. Suy ra \OC\ là đường trung trực của \AB\, do đó \CB=CA.\ Xét \\Delta CBO\ và \\Delta CAO\ có \CO\ chung GT \CA=CB\ cmt \OB=OA=R\ Suy ra \\Delta CBO=\Delta CAO\ \\Rightarrow \widehat{CBO}=\widehat{CAO}\. 1 Vì \AC\ là tiếp tuyến của đường tròn \O\ nên \AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\ 2 Từ 1 và 2 suy ra \\widehat{CBO}=90^{\circ}\. Tức là \CB\ vuông góc với \OB\, mà \OB\ là bán kính của \O\. Vậy \CB\ là tiếp tuyến của đường tròn \O\. b Ta có \OA=OB=R=15;\ \\ HA=\dfrac{AB}{2}=\dfrac{24}{2}=12\. Xét tam giác \HOA\ vuông tại \H\, áp dụng định lí Pytago, ta có \OA^2=OH^2+AH^2\ \\Leftrightarrow OH^{2}=OA^{2}-AH^{2}=15^{2}-12^{2}=81\ \\Rightarrow OH=\sqrt{81}=9cm\ Xét tam giác \BOC\ vuông tại \B\, áp dụng hệ thức lượng trong tam giác vuông, ta có \OB^{2}=OC\cdot OH \Rightarrow OC=\dfrac{OB^{2}}{OH}=\dfrac{15^2}{9}=25cm.\ Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C.. Bài 24 trang 111 sgk Toán 9 – tập 1 – Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn Advertisements Quảng cáo Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a Chứng minh rằng CB là tiếp tuyến của đường tòn. b Cho bán kính của đường tròn bằng 15cm, AB=24cm. Tính độ dài OC. a Gọi H là giao điểm của OC và AB. Vì \OH\perp AB\ nên \HA=HB\, suy ra OC là đường trung trực của AB, do đó \CB=CA.\ \\Delta CBO=\Delta CAO\ \\Rightarrow \widehat{CBO}=\widehat{CAO}\. Vì AC là tiếp tuyến của đường trong O nên \AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\. Do đó \\widehat{CBO}=90^{\circ}\. Vậy CB là tiếp tuyến của đường tròn O. b Xét tam giác HOA vuông tại H, có \OH^{2}=OA^{2}-AH^{2}\ \=15^{2}-12^{2}=81\ \\Rightarrow OH=9cm\ Xét tam giác BOC vuông tại B, có \OB^{2}=OC\cdot OH\ \\Rightarrow OC=\frac{OB^{2}}{OH}=\frac{225}{9}=25cm.\ Nhận xét. Ở câu a ta đã dùng dấu hiệu nhận biết tiếp tuyến để chứng minh CB là tiếp tuyến của đường tròn O. Ta cũng có thể dựa vào tính chất đối xứng của đường kính để chứng minh CB là tiếp tuyến. Thực vậy B và A đối xứng qua đường thẳng chứa đường kính CO, mà CA là tiếp tuyến nên CB phải là tiếp tuyến. Bài 24 trang 111 SGK Toán 9 tập 1 được hướng dẫn chi tiết giúp bạn giải bài tập trang 111 sách giáo khoa Toán lớp 9 tập 1 và ôn tập các kiến thức đã muốn giải bài 24 trang 111 SGK Toán 9 tập 1 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết, không chỉ tham khảo cách làm hoặc đáp án mà bài viết này còn giúp bạn nắm vững lại các kiến thức Toán 9 chương 1 phần hình học về dấu hiệu nhận biết tiếp tuyến của đường tròn để tự tin giải tốt các bài tập bài 24 trang 111 SGK Toán 9 tập 1Cho đường tròn \O\, dây \AB\ khác đường kính. Qua \O\ kẻ đường vuông góc với \AB\, cắt tiếp tuyến tại \A\ của đường tròn ở điểm \C\.a Chứng minh rằng \CB\ là tiếp tuyến của đường Cho bán kính của đường tròn bằng \15cm,\ AB=24cm\. Tính độ dài \OC\.» Bài tập trước Bài 23 trang 111 SGK Toán 9 tập 1Giải bài 24 trang 111 SGK Toán 9 tập 1Hướng dẫn cách làma Dùng dấu hiệu nhận biết tiếp tuyến Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường dụng tính chất+ Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.+ Nếu một đường thẳng là tiếp tuyến của đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm Sử dụng định lí Pytago \\Delta ABC\ vuông tại \A\, khi đó \BC^2=AC^2+AB^2\.Sử dụng hệ thức lượng trong tam giác vuông \\Delta ABC\, vuông tại \A\, \AH \bot BC\, khi đó \AB^2= án chi tiếtDưới đây là các cách giải bài 24 trang 111 SGK Toán 9 tập 1 để các bạn tham khảo và so sánh bài làm của mìnha Gọi \H\ là giao điểm của \OC\ và \AB\.Vì \OH\perp AB\ nên \HA=HB\ Định lý 2 - trang 103.Suy ra \OC\ là đường trung trực của \AB\, do đó \CB=CA.\Xét \\Delta CBO\ và \\Delta CAO\ có\CO\ chung GT\CA=CB\ cmt\OB=OA=R\Suy ra \\Delta CBO=\Delta CAO\ \widehat{CBO}=\widehat{CAO}\. 1Vì \AC\ là tiếp tuyến của đường tròn \O\ nên\AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\ 2Từ 1 và 2 suy ra \\widehat{CBO}=90^{\circ}\.Tức là \CB\ vuông góc với \OB\, mà \OB\ là bán kính của \O\.Vậy \CB\ là tiếp tuyến của đường tròn \O\.b Ta có \OA=OB=R=15;\\\ HA=\dfrac{AB}{2}=\dfrac{24}{2}=12\.Xét tam giác \HOA\ vuông tại \H\, áp dụng định lí Pytago, ta có\OA^2=OH^2+AH^2\\\Leftrightarrow OH^{2}=OA^{2}-AH^{2}=15^{2}-12^{2}=81\\\Rightarrow OH=\sqrt{81}=9cm\Xét tam giác \BOC\ vuông tại \B\, áp dụng hệ thức lượng trong tam giác vuông, ta có\OB^{2}=OC\cdot OH \Rightarrow OC=\dfrac{OB^{2}}{OH}=\dfrac{15^2}{9}=25cm.\» Bài tiếp theo Bài 25 trang 111 SGK Toán 9 tập 1Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 24 trang 111 SGK Toán 9 tập 1. Mong rằng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học còn vấn đề gì băn khoăn?Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn

bài 24 trang 111 sgk toán 9 tập 1